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Systematic renormalized perturbation expansions for turbulence and turbulent con- 
vection are constructed which are invariant at  each order under random Galilean 
transformations. Two types of expansion are developed whose lowest truncations 
give, respectively, the Lagrangian-history direct-interaction approximation and the 
abridged Lagrangian-history direct-interaction approximation. These approximations 
previously were derived as heuristic modifications of the Eulerian direct-interaction 
approximation (Kraichnan 1965). The techniques used involve reversion of primitive 
perturbation expansions for the generalized velocity field u(x, tls), defined as the 
velocity measured at time s in the fluid element which passes through x at time t .  
The new expansions are illustrated by application to a random linear oscillator, to 
passive-scalar convection by a random velocity and to the Lagrangian velocity 
covariance. The lowest term of the expansion for the passive scalar gives Taylor’s 
(1921) exact result for dispersion of fluid elements, and higher terms describe the 
deviations of the particle-displacement distribution from Gaussian form. In all the 
applications the assumed underlying statistics are more general than Gaussian statis- 
tics, which appear as a special case. 

1. Introduction 
Renormalized perturbation expansions have been used in turbulence theory for 

some twenty years. Recently they have been given an elegant functional formulation 
by Martin, Siggia & Rose (1973) and Phythian (1975, 1976). These expansions, in 
which triple moments of the velocity field are expressed as infinite power series in the 
covariance of the velocity field, are markedly superior to primitive perturbation 
expansions in powers of the Reynolds number, Truncations of the latter give un- 
physical results except at  very small Reynolds numbers while the simplest truncation 
of a renormalized expansion is the direct-interaction approximation (Kraichnan 
1964a), which is self-consistent at all Reynolds numbers and in good numerical agree- 
ment with numerical simulations of isotropic turbulence at  moderate Reynolds num- 
bers (Orszag & Patterson 1972). 

In  one important respect, however, the renormalized expansions so far used are 
inferior to the primitive expansions. The former, but not the latter, give at  every order 
a spurious effect of convection by large spatial scales upon energy transfer among 
small spatial scales (Kraichnan 1964 b ) .  This is because the renormalized expansions 
involve two-time Eulerian covariances and the correlation time of any Eulerian time- 
displaced average is controlled by the random displacement of velocity-field structures 
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through convection by the large, energetic scales. Energy transfer, on the other hand, 
should be negligibly affected by large-scale convection if the large scales do not con- 
tribute significantly to the straining field. The infinite renormalized expansions must 
be summed completely to eliminate the spurious effects of convection on energy 
transfer. In the direct-interaction approximation, these effects give an incorrect 
inertial-range law. 

In the present paper, we construct new renormalized expansions which are free of 
spurious convection effects at  every order. In  formal terms, each order of the new 
expansions is invariant under a random Galilean transformation (RGT). The RGT 
is defined as the addition to the turbulent velocity of a spatially uniform convecting 
velocity whose direction and amplitude vary randomly from one realization to another 
and whose statistical distribution may conveniently be taken as isotropic and 
Gaussian. Such a stochastic uniform velocity affects all Eulerian time-displaced 
averages but has no effect on energy transfer in homogeneous turbulence. The primi- 
tive perturbation expansions also are invariant under RGT a t  each order while the 
old renormalized expansions violate this invariance a t  each order. 

The new expansions are constructed by breaking out of the Eulerian framework 
and dealing with a generalized velocity field u(x, tls) defined as the velocity measured 
a t  time s in the fluid element whose space-time trajectory passes through (x, t ) .  Thus 
u(x, t J t )  is just the Eulerian velocity u(x, t )  while u(x, O l t )  is the usual Lagrangian 
velocity if t = 0 is the initial time. The generalized field obeys an equation like that 
of a passively advected field (Kraichnan 1965) : 

8u(x, t ls)/8t = -u(x, t )  . VU(X, t l s ) .  (1 .1)  

The RGT-invariant renormalized expansions are formed by a straightforward 
technique of series reversion which is easily described, although somewhat complicated 
in detail. There is no appeal to Feynman-type diagrams and the initial distribution 
of the turbulent velocity field need not be normal. The same technique gives an 
elementary derivation of the old, or Eulerian, renormalized expansions. The lowest 
truncations of two variants of the RGT-invariant renormalized expansions give 
respectively the Lagrangian-history direct-interaction (LHDI) and abridged Lag- 
rangian-history direct-interaction (ALHDI) approximations, which previously 
(Kraichnan 1965) were derived as heuristic modifications of the Eulerian direct- 
interaction approximation. Now these approximations appear as the first steps in 
systematic expansions which are built from the primitive perturbation expansions 
without any use of the Eulerian renormalized expansions as intermediaries. 

In order to give a brief qualitative explanation of the analysis to follow, we suppose 
that the distribution over the ensemble of the initial Eulerian velocity u(x,O) is 
homogeneous, isotropic and the sum of one or more multivariate-normal distributions 
which are identical except for the normalization of the total kinetic energy. Then all 
odd-order moments of u(x, 0) vanish and all even-order moments are reducible to 
products of the velocity covariance. More general initial distributions can be handled, 
but they would add complications which are pointless for our present purpose. Let 
uO(x, t )  be the solution of the linearized Navier-Stokes equation (nonlinear terms 
removed), G&.(x, t ;  x’, t ‘ )  be the Green’s tensor of the linearized equation, and define 
the covariances 

qj(x, t ;  x’, t ’ )  = ( U i ( X ,  t )  U i ( X ’ ,  t ’ ) ) ,  UC(X, t ;  x‘, t ’ )  = ( U ? ( X ,  t)u!(x’, t’)). (1.2) 
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Finally let Gij(x, t ; x’, t ’ )  be the average Green’s tensor for response of the actual field 
u(x, t )  to infinitesimal perturbations. Since uo(x, t )  decays linearly from u(x, 0 ) ,  any 
moment of uo can be expressed in terms of the covariance U o .  

If the nonlinear terms in the Navier-Stokes equation are reintroduced as a per- 
turbation, an iteration process gives u(x, t )  as a functional power series in uo and Go. 
Any moment of u can then be developed as a power series in U o  and Go by expanding 
each u factor in the moment, multiplying out the series, averaging, and reducing the 
averages to sums of products of covariances. A closely related procedure gives such a 
development for G also. These series in UO and GO are the primitive perturbation 
expansions. 

TheEulerian renormalized expansion may now be constructed by the following steps. 
(i) Revert the developments for U and G by iteration to yield expansions for Go 

and UO in functional powers of G and U .  
(ii) Substitute the latter expansions for each GO and U o  factor in the primitive 

expansion for the tziple moments. 
(iii) Multiply out and collect terms. The result is what is called the line-renormalized 

expansion for the triple moments, in which there appear powers of G and U only. 
In the special case where the initial distribution is simply normal, this renormalization 
accomplishes the elimination of self-energy parts, in the language of field theory. In  
the more general case we have taken, self-energy parts are not eliminated. A further 
reversion, whose description we defer, gives what is called the vertex-renormalized 
expansion for the triple moments. 

The linearization of (1 .1 ) ,  with the right-hand side set equal to zero, gives simply 

uyx, t J s )  = UO(X, 8). (1.3) 

If the right-hand side of (1.1) is reintroduced as a perturbation, and (l.l),  together 
with the Navier-Stokes equation, is solved iteratively, then the same steps as for the 
Eulerian field yield expansions for both the covariance U,(x, t J s ;  x‘, t ‘ l s ’ )  and the 
average infinitesimal Green’s tensor Gij(x, t l s ;  x’, t ‘ l s ’ )  of the generalized field in powers 
of U!j(x, t l s ;  x’,t’ls’) and G$(x, t l s ;  x‘,t‘)s‘). In  consequenceof (1.3), the latter satisfy 

U ! j ( ~ , t l ~ ; ~ ’ , t ’ ( ~ ’ )  = U ! j ( ~ , ~ ; ~ ’ , ~ ’ ) ,  G!$(x,tls;x’,t’Is’) = G&(x,s;x’,s’). (1.4) 

The crucial step in forming the RGT-invariant renormalized expansions is a new 
reversion of the series for the generalized U and G in powers of Uo and GO. Since U and 
G depend non-trivially on four time arguments while, by (1.4), Go and Uo depend only 
on two there is clearly more than one way to express the latter in terms of the former. 
The Eulerian reversion of step (i) therefore is not unique. An alternative reversion 
can be constructed by the following new steps : 

(iv) In the primitive expansions for i&(x, t ls ;  x’, t Js ’ )  and Gij(x, t ls ;  x’, tjs’), the 
functions with labelling times t and t‘ equal, change the labelling times (preceding the 
vertical bars) in every U o  and Go factor to t. By (1.4) this leaves every term unchanged 
in value. 

(v) Revert by iteration to give expansions of U&(x, t l s ;  x‘, t l s ’ )  and Gfj(x, 
t ( 8 ;  X’,tls’) in functional powers of Qj(x, t ( s ;  x’, t l s ’ )  and Gtj(x, t l s ;  x’, t ls ’ ) .  

(vi) In the primitive expansions for triple moments with simultaneous labelling 
times t change all labelling times of Go and U o  factors to t ,  again by (1.4).  
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(vii) Use the new expansions for Uo and Go in powers of U and G to re-express the 
primitive expansions for the triple moments as expansions in powers of U and G ,  in 
analogy with the previous steps (ii) and (iii). 

Since U..(X, t J s ;  x’, tJs ’ )  and GSj (x ,  t j s ;  x’,  t j s ’ )  trace events along simultaneously 
labelled fluid-element trajectories, they are RGT-invariant and so, therefore, are the 
new renormalized expansions for the simultaneously labelled triple m0ments.t The 
lowest-order truncation of these expansions gives the LHDI approximation. An 
elaboration of the reversion process extends it to triple moments with non-simultaneous 
labelling times and yields the full LHDI approximation of Kraichnan (1965). 

If no truncation is made the Lagrangian-history (LH) expansion outlined above 
yields closed, infinite-series integro-differential equations for G and U with general 
time arguments ( t l s ;  t ’ ls ’) .  A closed subset of these equations involves only U and G 
with arguments of the form ( t ( s ;  t ld),  the purely Lagrangian functions. This is the 
counterpart of the closed, infinite-series equations for the purely Eulerian functions, 
with arguments of the form (tlt; t’lt’), obtained from the Eulerian renormalized 
expansion. 

A second RGT-invariant renormalized expansion involves only the subset of 
Lagrangian functions with arguments of the form ( t l t ; t ls) ,  t >, s. It is formed as 
follows (we suppress space arguments) : 

(viii) In  the primitive expansions for G ( t ( t ;  t l s )  and U ( t l t ;  t l s )  change every factor 
Go(t l ( s , ;  tZl82) and Uo(t,Ia1;t21s,), s1 B 82) $0 Go(s11sI;sIIs2) and uo(s,Isl;sl/sJ, by 
authority of (1.4). 

(ix) Revert to give Go(tlt; t J s )  and Uo(tIt; tls) as functional power series in G ( t J t ;  t J s )  
and U ( t l t ;  t l s ) .  

(x) Substitute these expansions into triple moments, again in analogy with steps 
(ii) and (iii). 

The resulting abridged Lagrangian-history (ALH) renormalized expansion gives 
closed, infinite-series equations for G ( t ( t ;  t l s )  and U(tl t ;  tls). The lowest-order trun- 
cation is the ALHDI approximation. 

In order to keep the present paper as little complicated as possible, the procedures 
outlined above are applied not to Navier-Stokes turbulence but to the analytically 
simpler problem of a passive scalar convected by a random velocity field which is 
constant in time in the Eulerian frame. The Eulerian renormalized series for this 
problem, and the reversion technique for generating them, have been discussed 
previously (Kraichnan 1 9 7 0 ~ )  and there exist computer simulations of the scalar 
diffusion (Kraichnan 1970b, 1977). The LHDI approximation for the passive-scalar 
dynamics has also been presented before (Kraichnan 1965). 

The analysis of the passive-scalar equations is preceded by that of a random linear 
oscillator, which is seen to be equivalent to the scalar problem in the degenerate case 
where the velocity field is spatially uniform. This permits the introduction of the 
methods in the simplest possible context. However, we retain the generalization to 
non-normal statistics because it makes clear some important features of the renorm- 
alized expansions. 

t The total velocity field under the RGT is u + V, where v is the uniform field. 
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2. Renormalized expansions for the random oscillator 
Let the scalar field $(x, t )  obey 

(a/at - K v 2 )  $(X, t )  = - U(X, t )  . v$(X, t ) ,  v. U(X, t )  = 0, (2.1 ) 
where K is a constant diffusivity. The generalized field $(x, tls), defined as the scalar 
amplitude a t  time s in the fluid element whose trajectory passes through (x, t ) ,  then 

(2.2) 
satisfies 

These equations may be Fourier-transformed with respect to x (Kraichnan 1965). 
Consider for now the degenerate case where u(x, t )  = v, an isotropically distributed, 
uniform, time-independent velocity field. Clearly the different wave vectors uncouple 
and each wave-vector amplitude obeys equations of the form 

a$@, t (s ) /a t  = -WX, 4 .  V$(X, tls), $(x, 818) = $(x, 8). 

(d/dt -t v) x ( t )  = iaxft), (2.3) 

az(t]s)/at = iaz(tls), z(sls) = z(s),  (2.4) 

where v = K k z ,  a = - v .  k and z is the amplitude for a wave vector k. 
The entire apparatus of renormalized perturbation expansions outlined in $ 1  is 

most simply illustrated by applying it to the generalized random oscillator defined by 
(2.3) and (2.4). We shall assume that odd moments of a vanish and denote the values 
of even moments by M,, = (azn). 

Consider first the Eulerian Green's function 6(t, t ' )  = 6(t - tf),  defined as the solution 
of (2.3) if z ( t  < 0) = 0 and a forcing term S(t - t ' )  is added to the right-hand side. Thus 

(2.5) 

(d/dt + v ) 6 ( t )  = ia6( t )  (t 2 01, 6(0) = I, 6(t < 0) = 0. (2.6) 

6(t) = Go(t) + ia Go(t - s) d(s )ds  (t 2 0), (2.7) 

6(t) = Go(t) + iaGO * Go + (ia)Z GO * GO * Go + . . . , 

This is equivalent to the integral equation 

1: 
where GO(t) = exp( - vt). The solution of (2.7) by iteration is 

(2.8) 

where * denotes convolution and the argument t is implicit. The closed-form solution 
is of course 6(t) = exp ( - vt + iat). The average of (2.8) over the distribution of a gives 
for G(t )  = (6(t)) the primitive perturbation series 

G(t )  = Go(t) - M,Go* Go * Go + M,Go* Go* Go* Go* Go - M6Go(* + . . . . (2.9) 

Step (i) in the programme of 3 1 is the reversion of the functional power series (2.9). 
A general iterative method for such reversions is given in the appendix. Its application 
to (2.9) gives 

Go(t)  = G ( t ) + ~ ~ ~ G * G * G + ( 3 M g - M 4 ) G ' ( + G ) 4 + ( 1 2 M ~ - 8 M z ~ ~ * + ~ 6 ) G ( * G ) G +  ... . 

Now substitute (2.8) into the right-hand side of (2.6), average and obtain the primitive 
perturbation expansion 

(2.11) 

(2.10) 

( ia6( t ) )  = - MzGO * Go + M4Go* Go* Go * Go - M6Go(* + . . . . 
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Measuring time 

FIGURE 1. Integration path for (2.15). The values o f t  and t‘ 
are unrestricted, but s > s‘ always. 

Following steps (ii) and (iii) of Q 1,  substitute (2.10) for each Go factor in (2.1 l) ,  multiply 
out and collect terms. The result is the Eulerian renormalized expansion 

( i ~ B ( t ) )  = - M. G + G + (M4 - 221.1;) G(+ G)3 - (Me - 6M2M4 + 7 M i )  G(* G)5 + . . . . (2.12) 

Equation (2.12), together with 

(d/dt + V) G(t)  = (ia@(t)), (2.13) 

the average of (2.6), gives a closed, infinite-series integro-differential equation for G. 
If only the M,G+G term in (2.12) is retained, the result is the direct-interaction 
approximation for G. The primitive and renormalized expansions have substantially 
different properties. With the integrations performed, (2.11) gives 

(iuG(t)> = exp ( -  vt) ( - ~ , t + ~ , t 3 / 3 !  - ~ , t 5 / 5 !  + ...I, (2.14) 

while, if the distribution of u is smooth, each term in (2.12) vanishes as t -+ co after the 
exp ( - vt) has been factorized out of the convolutions. 

Before discussing the  renormalized expansions for the covariance of x ( t ) ,  we shall 
carry out the LH and ALH renormalizations for the averaged Green’s function 
G(tJs ;  t ’ l s ’ )  of the coupled equations (2.3) and (2.4). G is the average of @(t ls ;  t ’ ls ’ ) ,  
defined as the solution of (2.3) and (2.4) if z(s < s’) = 0 and a forcing term & ( t - t ’ )  
is added to the right-hand side of (2.4) a t  s = s‘. Thus, as shown in figure 1,6 is found 
by integrating (2.4) from t’ to s’, integrating (2.3) from s‘ to s, and finally integrating 
(2.4) from s to t .  This corresponds to the integral equation 
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where Go(t1s;t’ls’) = exp[-v(s-s’)] (2.16) 

is the Green’s function of the linearized (a  = 0) equations. Inspection of (2.3) and 
(2.4) shows that the exact solution of (2.15) is 

Go( 1254) o(5434) + ia 

6(tIs;t’lst) = exp[ia(t-t’)-v(s-s’)l (s  2 8‘). (2.17) 

No inequalities restrict t and t’ in (2.15)-(2.17). Equation (2.4) defines a labelling 
transformation which can go eit,her forwards or backwards in time. 

By (2.16) and (2.17), G(t1s;tls’) = Go(t}s;tls’), so that the ALH renormalization 
(steps (viii)-(x) of $ 1 )  is empty for G. This is not true for the full passive-scalar 
problem with non-uniform velocity fields. The analysis for the LH expansion is made 
clearer and more compact by using a shorthand notation for the time arguments and 
integrations. We shall denote (t,lt,; .$,It4) by (1234) and write 

5 1: 
J t z  

I n  this notation (2.15) becomes 

d( 1234) = Go( 1234) + ia Go(1255) d(5534) 

+ia rl‘l 5 Go(1252)d(5234) (tz 2 t4). (2.18) 

The primitive expansion for G(1234) is formed by solving (2.18) iteratively and 
averaging. Thus (2.18) (with changed arguments) gives 

d(5434) = GO(5434) +ia 6 Go(5464) d(6434), KI (2.19a) 

d(  5234) = GO(5234) + ia Go(5264) G(6434) +- ia GO(5266) d(6634) 

+ i a l l  1 G0(5262) 6(623*), (2.19~) 

where cancellations of integration ranges due to equalities of arguments have been 
noted. To obtain the primitive expansion to third order in GO, (2.19) is substituted 
into (2.18), each d is changed to  Go and the result is averaged over a. To carry the 
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expansion to higher orders, each d in (2.19) is re-expressed using (2.18). The primitive 
expansion with all third-order terms shown explicitly is 

G( 1234) = Go( 1234) - M2 Go( 1254) GO(5464) GO(6434) 

56 +..SI:; 

- .  , 

Go( 1255) GO(5564) G'(6434) -M, 

G0(1252) GO(5264) GO(6434) -M, 

Go( 1255) GO(5566) GO(6634) 

GO(1252) G'(5266) GO(6634) 

G(1215)G(1514)G(1434)+Mz 56 G(1215)G(1516)G(1634) s ::I 

Go( 1252) GO(5262) GO(6234) + higher-order terms. (2.20) 

The LH reversion of (2.20) requires that the labelling times be altered first, in 
accord with step (iv) of $ 1 .  By (2.16) all labelling times on the right-hand side of 
(2.20) may be altered freely without changing values. The LH alteration prescription 
is to change all intermediate labelling times (those that are integrated over) to t,. 
The labelling time t ,  is unaltered. This is just step (iv) as stated in $ 1  if t ,  = t ,  and 
extends that step to t ,  # t,. With the labelling times changed, reversion according to 
the appendix is accomplished up to the third order shown explicitly in (2.20) by simply 
exchanging the symbols G and Go and changing the signs of all the teims in M,. At 
higher orders, the reversion is more complicated but proceeds straightforwardly. The 
result is then [step (v)] 

This expansion may be simplified by noting that G( 12 12) = G( 1414) = 1, by definition. 
Moreover, the integrations over measuring times (the times following the vertical 
bars in the uncompacted notation) are all simply convolutions, where they are not com- 
pletely trivial. Thw &e exponentials invwhich appear in (2.17) combine in (2.21) togive 
a simple factor exp [ - v(t, - t 4 ) ]  in every term. The whole equation is identical with that 
for the case v = 0 except for multiplication by that factor. But for v = 0 there is no 
measuring-time dependence and each G(mnrs) factor in (2.21) can be replaced with- 
out change of value by the corresponding Eulerian function G(mmrr) = G(t,, - t,,). The 
K dependence in the full passive-scalar problem doesnot factorize out in thissimpleway. 



(iad(1222)) = - M, 

52) Go( 5 

GO(1232) GO(3222) 

+N4[1 222 ~~~/Go(1232)Go(3P42)Go(4 

( i~d(1222))  = -M2 s 3 G0(1212)G0(1222) :I 
Finally, we generate the LH expansion by carrying out step (vii) : we substitute (2.21), 
with properly named arguments, for every Go factor in (2.25). 

Only GO(1212) and GO(1222) occur in (2.25), whatever the order. GO(1212) has the 
trivial reversion GO(1212) = G(1212); if t, = t ,  and t, = t,, the integra.ls in (2.21) cancel 
identically at  each order. For G0(1222), (2.21) gives 

GO(1222) = G(1222) +M, 34 [G(l212)]2 G(1222) + higher-order terms. (2.26) 

The LH expansion is now obtained by writing each GO( 1212) factor in (2.25) as G( 1212) 
and substituting (2.26) for each GO(1222) factor. 

The explicit form of the final result can be obtained readily, without doing all the 
details of substitution and collection of terms. In  both (2.25) and (2.26) only the 
arguments (1212) and (1222) occur on the right-hand sides, and (1222) occurs only 
once in each term. This is a direct consequence of the prescription for changing labelling 
times and of the fact that only the third integral in (2.18) is involved in the iterations. 
Consequently, each term in the final result for (id?( 1222)) is an integral over inter- 
mediate times with an integrand that is independent of those times and consists of a 
number of factors G(1212) = 1 and a single factor G(1222). The integrations are then 
trivial. Since there are only odd numbers of integrations in (2.25), and even numbers 

Cl ::I 

which are the differential equivalent of (2.15) averaged. The moment (ia6( 1234)) 
plays the same mle for G as the triple moments discussed in § I do for the covariance. 
We generate the primitive expansion for (ia6( 1234)) by substituting (2.18), iterated 
to whatever order is desired explicitly, for @( 1234) and averaging. The simplest case 
is (id?( 1222)) because only the third integral in (2.18) survives. This case serves both 
to  illustrate the methods and to  display the key features of t'he LH expansion for the 
present model problem. The iteration gives 
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in (2.26), each final term involves an odd number of integrations which, when per- 
formed, yield an odd power of t = t, - t,. The final result must then have the form 

1 m 

dG( 1222)ldt = (iaG(1222)) = C C2,( - l)”t2,-l/(2n - I)!  G( 1222), (2.27) 

where the C,, can be determined by actually doing the work, and the factors ( -  1)” 
and 1/(2n - l)!  simply affect the value of C,,, 

What are the C2,? By (2.17), G(1222) = (exp(iat)), the characteristic function of 
the probability distribution of a. The series in (2.27) is then the logarithmic derivative 
of the characteristic function, and the C,, are simply the cumulants of the distribution 
of a. The first few are 

C2 = M2, C4 = M4- 3Mi, C, = it&- 15M2M4+ 30Mi. (2.28) 
We have checked the analysis by verifying (2.28) explicitly up to the C, term from the 
LH expansion. 

[ n = l  

In  the general case the LH renormalized expansion gives 

(iaQ(1324)) = C,,( - l)nt2n-’/(2n- I ) !  G(1324)) t = t , - t , .  (2.29) F r n  11 = 1 1 
This can be seen as follows. The alterations of labelling times leaves, in each term, 
one G factor with labelling times t ,  and t, and all the other factors with labelling times 
t ,  and t , .  The only dependence of the integrands on the intermediate times then comes 
from the exponentials of w which occur according t o  (2.17) and which involve only 
measuring times. Since measuring times are unaltered, the original convolution 
character of the integrations over these times remains, and the w exponentials factorize 
out of the convolutions to give a factor exp [ - w ( t ,  - t4)] in front of each term. The rest 
of the argument goes like that for (iaG(1222)). Again, we have verified the result. 

Before completing the programme for the random oscillator by giving the LH and 
ALH expansions for triple moments, we wish to compare the primitive expansion 
(2.14)) the Eulerian renormalized expansion (2.12) and the LH renormalized expan- 
sion (2.29). Both the primitive and the LH expansion give infinite-series differential 
equations for t h e  time derivative of G, while (2.12) gives an infinite-series integro- 
differential equa-tion. The pure differential character of the first two expansions 
carries over to the passive-scalar problem if K = 0, but not for K > 0, the reason being 
the mode dependence of the damping. 

No truncation of (2.14) gives a valid approximation for all t .  On the other hand 
(2.29) reduces to its leading term if the a distribution is Gaussian. When the higher 
cumulants do not vanish, any truncation of (2.29) whose last term has C2,( - 1)” 
negative gives an approximate differential equation for C whose solution is well 
behaved for all t and vanishes at t = 00. 

Equation (2.12) reduces to its leading term if a has a semicircle distribution. If the 
distribution is Gaussian, all higher truncations of (2.12) give integro-differential 
equation8 for G whose solutions blow up (Kraichnan 1961). For the semicircle 

distribution G ( t )  = exp( - wt)J,(2a0t)/aot, a$ = M,. (2.30) 

In this case, or any where the sign of G(t) oscillates, the logarithmic derivative of 
G(t), i.e. the sum of the series in square brackets in (2.29), has singularities. Thus 
(2.12) and (2.29) behave quite differently. The LH expansion is more appropriate 
when a is Gaussian or has moments that rise with order more rapidly than for a 
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Gaussian distribution. It leads more easily to well-behaved approximations in general. 
But the updating of labelling times gives an increased stability that makes repre- 
sentation of oscillations in G ( t )  impossible by truncations of (2.29). 

The LH reversion procedure was invoked in order that random Galilean invariance 
should survive renormalization. It is an unlooked for bonus that the final LH expan- 
sion for G ( t )  should have a simpler and more transparent relation to  the primitive 
moment expansion than has the Eulerian expansion, and give generally better approxi- 
mations as well. There is no problem of Galilean invariance with the Eulerian function 
G ( t ) .  Augmenting the equations of motion by a labelling transformation like (2.4) is 
a powerful procedure in other examples of stochastic dynamics where the question 
of random Galilean invariance does not enter a t  all. 

Now denote z(t l l t2) by 7412) and assume initial values z( to)  = z(tolto) = ~ ( 0 0 )  which 
are statistically independent of a and distributed such that ([z(O0)l2) = ( [ z *  (OO)]2). 

Define the covariance 

Under our assumptions 2 is real, and if z = x+iy, x and y are uncorrelated, so that 
Z ( l l l 1 )  = ( [ ~ ( t ~ ) ] ~ ) - ( [ y ( t ~ ) ] ~ ) .  By (2.3) and (2.4), Zobeys 

( a / a t + ~ ) Z ( 1 1 3 4 )  = (i~~(ll)~(34)), (2.32) 

(2.33) 

Z(1234) = Z(3412) = (2(12)2(34)). (2.31) 

aZ(l234)/at = (~uz( 12) z(34)). 

If v = 0, [x( t1)]2 + [y(t1)I2 is conserved. The exact value of Z is 

Z( 1234) = (exp [ - v(t2 + t4) + ia(t, + t 3 ) ] )  Z ( O O O O ) ,  (2.34) 

where we take to = 0. 
Equations (2.3) and (2.4) have the linearized solution 

zO( 12) = exp ( - vt,) z(O0) (2.35) 

and yield the integral equation 

This represents integration of (2.3) along the diagonal segment of figure 2 followed 
by integration of (2.4) along the vertical segment. Iteration of (2.36) gives an expansion 
of z( 12) in Go and zo functions, and the averaged product of the series for z( 12) and 
z(34) is the primitive expansion for Z( 1234). Thus, for example, 

Z (  1134) = Z"( 1134) - M2 Go( 1155) GO(34.66) ZO(5566) 

Go( 1 155)C0(3464) ZO(5564) -&I2 GO(1155) CO(5566) ZO(6634) 

3454) CO(5466) Zo( 11 66) CO(5566) Zo( 1166) - M2 

Zo( 1164) + higher-order terms. (2.37) 
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(Ol0,l Measuring time 

FIUURE 2. Integration path for (2.36). The argument t, may have any value t ,  >, 0. 

Here the underlined Go factors are the ones that appear in the expansion of ~ ( 3 4 )  and 
the second pair of arguments in each Z0 denotes a zo factor in that expansion. There 
are five more terms of second order in Go in the general case Z (  1234). 

The Eulerian renormalized expansion for (iaz( 11) ~(33)) is obtained by repeating 
steps (i)-(iii) of 5 1. Equation (2.37) is reverted, in two stages, to give an expansion of 
ZO(1133) in powers of the Eulerian Z and G. First, reversion by the method of the 
appendix gives a series in Z and GO; then the Go factors are expressed in terms of G 
by (2.10). The result is used, together with (2.10), to express all the Go and Zo factors in 
the primitive expansion of (iaz( 11) ~ ( 3 3 ) )  as series in G and 2. 

For the LH renormalized expansion of (iaz( 12) z(34)), steps (iv)-(vii) are performed 
with the following elaboration of the relabelling prescription to the general case 
t ,  # t,: in the primitive expansions for the moments Z(1234) and (iaz(l2)2(34)) 
change each intermediate labelling time in the expansion of the factor z( 12) to t ,  and 
each intermediate labelling time in the expansion of ~ ( 3 4 )  to t,. Thus in (2.37) the 
labelling times in every Go not underlined and in the first argument pair of every 20 
are changed to t ,  while all other intermediate labelling times are changed to t,. This 
prescription is that of Kraichnan (1965). It generalizes to products of any number of 
z factors. It is consistent with the prescription already used for the expansion of 
G( 1234) since C( 1234) is in fact the avera,ge of z( 12) with a particular initial condition. 

We shall omit intermediate steps, which follow those for G detailed before, and 
give the final results. The complete lowest-order analysis for the full passive-scalar 
problem is given in Kraichnan (1965). The LH expansion gives a formula like (2.29) : 

i - m  1 
(ia~(12)2(34)) = Cz,( - 1)fflt2n-1/(2n- l)! Z(1234)) t = t,+t,. (2.38) J 

By (2.34) and (2.17) the closed form for Z(1234) is 

Z(1234) = G(t,+t,(tz+t4; O l O ) Z ( O O O O ) .  (2.39) 

The lowest truncation of (2.38) is thus an exact expression for aZ(1234)/at, if the 
distribution of a is Gaussian. The Eulerian expansion can be manipulated into the 

(2.40) form (iaz( 11) ~ ( 3 3 ) )  = X[G(t)] Z ( O O O O ) ,  t = t ,  + t,, 
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where 8[G(t)] is the right-hand side of (2.12). Thus, again, the Eulerian expansion is 
exact a t  the first truncation if a has a semicircle distribution. 

The ALH renormalization according to steps (viii)-(x) of $ 1 brings in some new 
features. We deal now only with arguments of the form (1  114). As noted already, the 
ALH renormalization for the Green's function is empty since G(1114) = GO(1114). 
The ALH relabelling of the right-hand side of (2.37), with t3 = t, and t ,  2 t,, is obtained 
by altering all labelling times, intermediate or not, in the Z o  factors so that each 
Go(mnrs) is changed to Go(nnns) and each Zo(mnrs) is changed to Zo(ns), where 

Z0(ns) = Zo(nnns) ( t fL 2 ts), Zo(ns) = Zo(snss) (t,  < t,). (2.41) 

Again, by (2.16) and (2.35) this changes no values. Equation (2.37) is then reverted 
and each Go is written as the G with the same arguments. The same alteration of 
labelling times is then made in the primitive expansion for (iaz(ll)z(14)) and each 
Go and go  in the altered expansion is replaced by G and by the reversion of (2.37) 
respectively. The result, after multiplying out and collecting terms, is the ALH 
renormalized expansion for (iaz( 11) z( 14)), in which there appear only functions of 
the form G(nnns) and Z(ns) .  

The algebra is simplest if v = 0, in which case there is no dependence of any function 
on measuring times and all the G functions which enter are equal to one. Nothing is 
lost by taking this case since, as before, the measuring-time dependence in the more 
general case is essentially trivial. If v = 0, the final expansion can be written as 

(ia[z(t)12) = - 2h(t) Z( t )  + I " f ( t ,  s )  Z(s) ds, (2.42) 
J O  

where h(t)  = 31. t - (M4 - 6M;) t3/3! + higher-order terms, (2.43) 

f ( t ,  s) = M4(4ts - 3 9 )  - 4M$(t2 - ts) + higher-order terms (2.44) 

and Z ( t )  = ( [ ~ ( t ) ] ~ ) .  Note that because of the measuring-time independence ~ ( 1 4 )  = 
z ( l l ) ,  so that (2.42) is actually the most general triple moment in the ALH set for 
v = 0. 

Equation (2.42) resembles both the LH and Eulerian expansions in that there are 
both completely updated terms, proportional to Z( t ) ,  and integrals over the past 
history of 2. If the distribution of a is Gaussian, the leading term of (2.42) is exact 
[h(t) = M,t , f ( t ,  s )  = 01. Truncation a t  this order is identical with the LH truncation. 
However, (2.42) has the peculiar feature that the remainder of the series does not 
vanish order by order for a Gaussian a ,  as does the LH expansion. Instead, if each 
order 271 (n  > 2) is expanded in powers oft, using the exact Z( t ) ,  the leading contribution, 
proportional to tZn-l ,  cancels and there is a residue of higher powers which are can- 
celled by the higher-order terms. Only the sum of all the orders n > 2 vanishes to 
all powers o f t .  Thus if a is Gaussian (2.42) is no longer exact if truncated at  2n > 2. 

3. Green's function for a passive-scalar field 
Now we return to the full passive-scalar dynamics described by (2.1) and (2.2). Let 

U(X, t )  be a velocity field with prescribed isotropic and stationary statistics. In corre- 
spondence with $2, we wish to treat statistics more general than Gaussian in order to 
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display better the structure of the expansions. For this purpose we take the distri- 
bution of u to be a sum of multivariate-normal distributions whose covariance func- 
tions differ only by a normalization factor. This has the consequence that moments 
of order 2n > 2 factorize into sums of products of covariances, as in a normal distri- 
bution, but exceed normal values by ratios R,, 2 I ,  the values R,, = 1 being reached 
only when the total distribution is strictly normal. Finally, we assume mirror- 
symmetric statistics. 

We also admit an RGT with velocity v which convects both the scalar field and the 
random velocity field u(x, t ) .  Under this transformation, which is switched on at  t = 0, 

u(x, t )  = [u(x - vt, tllo, $(x, tls) = [@(x - vt, tls)lo, (3.1) 
where the left-hand sides are values with the transformation and the right-hand sides 
those without. The total convecting velocity acting on I$ is u + v. 

Let G(x,tls;x’,t’ls’) be the average Green’s function for (2.1) and (2.2), and 
G(x,t; x’,t’) the Eulerian Green’s function for (2.1) alone. Then 

G(x,t;x’,t’) = G ( ~ , t l t ; ~ ’ , t ’ l t ’ ) ,  G(x,t’\s’;x’,t’Is‘) = 6 ( ~ - x ’ ) .  (3-2) 
G(x, t l s ;  x’,t’ls’) corresponds to G(tls; t’ls’) of $2, and the whole perturbation-expan- 
sion, relabelling and reversion apparatus of $ 2  carries over to the present problem 
with the sole change that intermediate integrations are over co-ordinates as well as 
times. In  what follows we shall therefore omit most of the steps in the derivations. 
They can be filled in with $ 2 as a guide. The basic perturbation expansion is given in 
detail to lowest order by Kraichnan (1965) and the Eulerian expansion is given to 
fourth order by Kraichnan (1970a). 

We set K = 0. This has several advantages. G becomes the probability distribution 
for dispersion of single fluid elements by the motion. The analysis is greatly simplified 
because (2.1) and (2.2) are the same with the result that there is no dependence at  all 
on measuring times : 

Finally, the elimination of linear damping shows up more sharply the deficiencies of 
approximations. The demands on approximations are also more severe when the 
Eulerian velocity field is frozen, u(x, t )  = u(x), except for a pcssible RGT. We shall 
therefore be principally interested in that case, which gives additional simplifications. 
In  the opposite extreme, very rapid time variation of u(x,t), all the renormalized 
expansions reduce to their leading terms, which then are equivalent. 

G(x?t/s;x’,t’/s’) = G(x,t;x‘,t’), t 2 t’. 

If we write 

G(x - x’, t - t ’ )  = G(x, t ;  x’, t ’ ) ,  qj(x - x’, t - t ’ )  = qj(x, t ; x’, t ’ ) ,  

the Eulerian renormalized expansion for aG( x, t ) /a t  can be expressed as 

aG(x, t)/at = /: ds P y  q(x - y, t - s) V2G(y, s) ds, G(x, 0) = 6(x), (3.3) 

where 

+@4-  1) Uii(X,t) U,,,(y-y’,s-s’)+R,U,,(x-y’,t-s’) v,,(y,s)] 
x G(X - Y, t - 8 )  [aG(y - Y‘, - s’)/8yj] [aG(y’, s’)/ayk] + higher-order terms. 

(3.4) 
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This corresponds to (2.12). The diffusivity acting on uniform scalar gradients is then 

l<(t) = j' q d Y  T ( Y ,  4, (3.5) 

if the u field is switched on at t = 0. 
The terms in (3.4) proportional to R4- 1 disappear when the u distribution is 

Gaussian (R4 = 1). They are self-energy terms in the diagram language of field theory. 
Truncation of (3.4) at the term linear in U gives the direct-interaction approximation. 
The function K ( t )  computed from this approximation agrees excellently with computer 
simulations of dispersion in the critical case of a frozen velocity field (Kraichnan 
1970b) with Gaussian statistics. The diiect-interaction approximation does less well 
in representing the short-time behaviour of the full function G(x ,  t ) .  For t small enough 
that typical fluid elements have travelled much less than a correlation length, u is 
effectively a uniform field and, as noted after (2.3)) the Fourier transform of G(x, t )  
is equivalent to the random oscillator G(t). The direct-interaction approximation for 
the latter is exact for a semicircle distribution of a, and the consequence is that 
JG(x, t )  dx2dx3, the probability distribution for dispersion along the x1 axis, is also a 
semicircle distribution in this approximation, while the full function G ( x ,  t )  for short 
t has an unphysical cusped shape (Roberts 1961). For times long compared with an 
eddy circulation time, the direct-interaction approximation for G(x,  t )  has a Gaussian 
shape. 

Our primary concern is behaviour under an RGT. The exact G(x, t )  changes under 
(3.1) according to the relation 

G(x,  t )  = exp [&vtt2V2] [G(x, t ) ] ,  = (27rvit2)-z exp ( - Ix - y12/2wtt2) [G(y,  t)],dy, 
(3.6) 

where v, is the root-mean-square value of any vector component of the Gaussianly 
distributed v field. The exact behaviour of U ( X ,  t )  is 

(3.7) U&x, t )  = exp (+vit2V2) [qj(x, t ) ] , .  
From (3.6) it follows that the total diffusivity with v switched on is 

where we use, t,wice, the commutation relation x f (V) = f (U) x - 8 f (V)/aV. Thus the 
diffusivities from the v field alone and from the u field alone are simply additive. 

Equation (3.8) is violated at  each order of (3.4). Consider the leading term. The 
total velocity covariance with v switched on is Siivi + q i ( x ,  t )  and by definition 
jG(x, t )dx = 1.  The leading term thereby generatm the w i t  term in (3.8). But by (3.6) 
and (3.7), G(x, t )  and Uii(x, t )  are both smeared out in space by the RGT, so that the 
integral over space in (3.5) is diminished. The direct-interaction expression for K ( t )  
thus does not exhibit invariance under the RGT as does the exact K ( t ) .  The same 
smearing phenomenon affects the values of each of the higher-order contributions to  
(3.4), and invariance is recovered only if the whole (divergent) series is summed. 

This particular violation of RGT invariance is not a serious practical matter 
because the one-particle diffusivity is usually dominated by the large scales, so that 
an incorrect representation of the added contribution of small scales is unimportant. 
However the mechanism of violation is essentially the same as in the more important 
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cases of transfer of scalar variance and the behaviour of the two-particle diffusivity, 
and also in the case of energy transfer in Navier-Stokes dynamics (Kraichnan 1964 a). 

The LH renormalized expansion for 

~ G ( x  - x‘, t - t ’ ) / a t  = - (u(x, t )  . V ~ ( X ,  t ; x’, t ’ ) )  (3.9) 

is constructed according to the programme in 5 1 by changing all labelling times in the 
primitive expansion of the right-hand side and reverting to express Uo and Go functions 
as series in U and G functions. Since we prescribe the u statistics we lack an equation 
of motion for u(x, t )  to use in this process. In  the frozen case u(x, t )  = u(x) we have 
simply 

uO(x,t]s) = u(x) (3.10) 

and the dynamics of u(x, t / s )  are fully given by the labelling transformation 

8u(x, t ls) /at  = -u(x) . VU(X, t l s ) ,  u(x, sls) = u(x). (3.1 1 )  

More generally, a wide variety of time dependencies for Uij(x, t ; x’, t ’ )  can be realized 
by adjoining to (3.11) an artificial equation of motion for u(x,t) of the form 

X(k, t)/at = iLa(k, t )  6(k, t ) ,  (3.12) 

where fi(k, t )  is a wave-vector amplitude of u(x, t )  and the a(k,  t )  are stationary random 
processes, which may be independent for each pair (k, - k). A special case of (3.12) is 

(3.13) 

where w(t) is a statistically stationary random uniform velocity field, a time-dependent 
RGT in other words. Our principal interest here is in the frozen case. 

It is instructive to form the LH renormalization for aG(x,t)/at in two stages. In  
the first stage, reversions are carried out for the scalar field only, with u(x, t )  treated 
as a given parameter field. In the second, the programme of 5 1 is completed by doing 
relabellings and reversions on the u field also. The first stage is in precise correspon- 
dence with the analysis of § 2, with the simplification that since K = 0 all the G functions 
are independent of measuring times. 

After the change of labelling times in the first stage, only two types of argument 
sets appear in the Go and later G functions which enter the expansion of the right-hand 
side of (3.9), (y, tls; y’, t l s ’ )  and (y, t l s ;  x’, t ’ l t ’ ) .  In  each term, there is only one function 
with arguments of the second type, and of the other factors in the term, of the first type, 
there is one with y = x, s = t [cf. the discussion preceding (2.27)]. But because of the 
measuring-time independence, 

8U(X, t)/at = w(t) .Vu(x, t ) ,  

(3.14) 
G(Y,tls;Y’,tls’) = G(Y, t l t ;Y’ , t ( t )  = f%’-Y‘), 

G(y, t l s ;  x’, t ’ l t ‘ )  = G(y, t l t ;  x’, t ’ l t ’ )  = G(y- x’, t - t ’ ) .  

Thus in each term of the final LH renormalized expansion all but one G factor is a 
&-function. The space integrals therefore collapse and after they have been performed 
the remaining G factor becomes G(x - x‘, t - t ’ ) .  The U factors, which all have argu- 
ment x or intermediate space arguments before the integrations, collapse to single- 
point averages. 

1 
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The series so obtained is 
oc 

~ G ( x ,  t ) /at  = C Ki,(t)VZnG(x, t ) ,  G(x, 0 )  = J ( x ) ,  (3.15) 
11 = 1 where 

1 
&(t) = 3 1, C(s)ds-+R4j:  d s j i  ds’/: ds”B(t -s“) U(s-s‘)  +higher-order terms, 

K:(t) = $(R4- 1 )  ds”U(t-s)U(s’-s”)+higher-order terms (3.16) 

and 

>. au,(x, t )  au,(x, t ‘ )  
U ( t )  = Uii(0, t ) ,  B( t -  t’) = - (Ui(X, t)V2Ui(X, t’))  = - ( axi axi 

The leading term of each Kg,(t) is of degree n in U .  The higher-order contributions to  
all the KB,(t) include terms with averages over space derivatives of u. 

The first-stage renormalized expansion, an  Eulerian-Lagrangian bastard, is mark- 
edly inferior t o  the straight Eulerian expansion (3.3), and its truncations give very 
bad approximations. KO,(t) in (3.15) is a formally exact infinite-series representation of 
the eddy diffusivity K(t ) .  But truncation of KB(t) at its leading term is an unacceptable 
approximation. The G factor which appears in the leading term of (3.4) is missing, 
and U(s )  carries no information about the spatial structure of the velocity field. I n  
the frozen-field case, where U ( s )  is constant, truncation of K;,(t) a t  the leading term 
gives a diffusivity that increases linearly with t forever and corresponds exactly to that 
of a random, frozen, spatially uniform velocity field. Moreover, the violation of RGT 
invariance noted for truncations of (3.4) continues to afflict truncations of (3.16). 

Note that (3.15) does not reduce to its leading term when u is Gaussian, so that 
R, = 1.  This contrast with (2.29), despite the correspondence of renormalization pro- 
cedures in the two cases, is a consequence of the present system having many coupled 
degrees of freedom. 

The second stage in constructing the LH renormalized expansion for aG(x, t)/at is 
to express all the U functions and spatial derivatives thereof in the expansions (3.16) 
for the KO,,(t) in terms of UO functions, change labelling times in the U o  functions 
according to the LH prescription, and then re-express the U o  functions in terms of 
U functions with the altered labelling times. This is made simpler in the frozen-u case 
by the fact that  the U functions in (3.16) are already the U Q  functions. We shall now 
carry out the steps for the frozen-field case up to  second order, which is sufficient to 
write out the final expansion for aG(x, t)/at up t o  fourth order (terms quadratic in U ) .  

We start by forming the primitive expansion of u(x, t j s )  through iteration of the 
integral-equation equivalent to (3.11). Let G, denote the Green’s function for (3.1 1). 
The function GL for the linearized equation is simply 

GO,(x, t Js ;  x’, t’ls) = 6 ( ~ - x ’ ) .  (3.17) 

Now we can restrict attention to  averages with simultaneous labelling times t since 
only such averages appear in (3.16) and, as stated in 9 I ,  the equations for such averages 
form a closed subset in the LH scheme. This means that after the change of labelling 
times in the primitive expansion only the function G$(x ,  t ls;  x’, tls), which has the 
trivial reversion 

G%(x , t j s ; x ‘ , t ]~ )  = G L ( x , ~ [ s ; x ’ , ~ ~ s )  = S(X-x’), (3.18) 
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appears. Note that s is the only measuring time which enters G functions in the 
integration of (3.11); it is a constant parameter. This all means that we can forget 
Green’s functions completely in handling (3.11) and in5tea.d simply iterate the integral 
of (3.11) with respect to t : 

Ui(X, t l s )  = u!(x, t l s )  - ds’u?(x, S’IS’)VjU!(X, 8’1s) 1: 
+ s,” ds’ 1;’ ds” uk(x, 8‘ Is’) V, uJ(x, s’’l 8”) Vj u!(x, sfr Is) + . . . , (3.19) 

where Vj = a/axj and uv(x, t l s )  = u?(x, sls) = ui(x), the frozen field. 
The averaged product of (3.19) for two values of x and s is 

Uin(X, qs,; x‘, t l s , )  = Utn(x, t ( s , ;  x‘, t ls,)  

+R4j;1 ds f s :  ds“ U;Jx, s’ls’; x’, s”~s”)vjV; u!n(x,s’Isl; x’,s’’Is2) 

+R4J ds‘J’ds“ uo,j(x’,s’JS’; X’,”’~”’)V;V~ U$Jx,tlsl; X’,”’(SZ) 
S? S? 

+ higher-order terms, (3.20) 

where V; = a/ax; and terms which vanish by incompressibility, mirror-symmetry or 
homogeneity have been omitted. The LH alteration prescription is to change all 
labelling times in (3.20) to t .  

Before reverting (3.20), with altered labelling times, we must deal with a compli- 
cation which was skipped over in $1. The fields u(x,t) and uo(x,tls) are solenoidal. 
But in general u(x, t l s )  is not because there is no pressure term in (3.11). Clearly every 
order of the reverted series for the solenoidal tensor UC(x, t ls ,  ; x, t ls,)  should be 
solenoidal. In  Kraichnan (1965) this was handled by treating the solenoidal part 
uS(x, tls) and the compressive or longitudinal part uc(x, tls) of u(x, t l s )  as symmetric- 
ally as possible by the device of introducing a fictitious compressive part of u(x, t )  
that did not convect’. For the present application, where we have no interest in uc, 
we apply solenoidal projection operators to both sides of (3.20), thereby obtaining the 
series for UFt,  the covariance of the solenoidal part only. Then we revert that series. 
The result is 
Uin(X,tlsl;X’,tlsz) 0 = Uf!~(x,tls1;x’,tls2) 

+ ( - R4 ds‘ Is: ds“ ug(x, tls’ ; x’, t Is”) vj VAt UFZ(X, tls, ; x’, t ( s , )  

- R4 Js; ds’ j: ds“ U%?(x, t 1s’ ; x, t Is”) vj v,, Uft(X, t I s1 ; x’ , t I s,) 

ds’ lS; ds“ UZ?(X’, t 1s’ ; x’, t l s ” )  0;v; U?f(X, t Is, ; x’, t ls,)  - 

+ higher-order terms , (3.21) 
Is 

where { }s denotes the part of the series solenoidal in both i and n. 
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Since we have taken the frozen-u case, each U in (3.16) may be written as Uo. To 
obtain the full LH expansion we now change all labelling times in these U Q  factors to 
t ,  substitute the series (3.21) for each U o  so altered and collect terms. The result is 

m 

aG(x, t)/at = C K,,(t)VZnG(x, t ) ,  G(x ,  0) = 6 ( ~ ) ,  (3.22) 
11 = 1 

where (3.23) 

K4(t)  = +(R4- 1 ) 1 :  ds1: d.s'/:' ds"UL(t-s) UL(tls';tld')+higher-order terms (3.24) 

and 
UL(t--S) = Ug'(x,t(t;x,tls), UL(tls;t18') = U:.(X,tlg;X,tlS'). (3.25) 

Again the leading term of each K,,(t) is of degree n in U functions. The K,,(t) are the 
same functions as the Kg,(t) in (3 . i5) ,  but they are expressed as different infinitre 
series and we use different symbols to emphasize this. 

The most striking difference from the bastard expansion (3.16) is that (3.23) con- 
tains only one term, Taylor's (1921)  exact expression for the eddy diffusivity.t If the 
u distribution is Gaussian (R, = I ) ,  the leading terms of each K,,(t), n 2, vanish, 
but the higher-order terms do not. Thus even in the Gaussian case there are non- 
vanishing coefficients of the higher derivatives of G in (3.22). The higher-derivative 
terms cause G(x, t )  to depart from a Gaussian shape and, since the leading term of 
(3.24) vanishes, these corrections to the Gaussian form first appear at  the sixth order 
of perturbation theory and are proportional to t6 a t  small t. The corrections to the 
leading term of (3.23) all disappear, whether or not u is Gaussian, because the higher 
terms in KO,(t) are all precisely cancelled by the higher terms in (3.21), on substitution. 

The leading term of each K,,(t) does not involve space derivatives of the covariance. 
For the degenerate case of a spatially uniform U, U ( t )  and UL(t)  are the same, the 
series K!j,(t) and Kzn(t)  are identical, and each reduces to its leading term. This case 
is equivalent t G  the random linear oscillator of $ 2  but with, in general, a time- 
dependent parameter a(t). The higher terms of each K,,(t) all involve spatial deriva- 
tives of the covariance. 

The moments (xtn) = / G ( x ,  t )  x:ndx, where x1 is any vector component of x ,  are 
fixed according to (3.32) by the K,,(t) for m 6 n. Thus 

(3.26) 

This shows explicitly how non-vanishing values of the K,,(t) for n > I imply depar- 
tures of G(x, t )  from a Gaussian shape. If u is Gaussian, the leading non-zero con- 
tribution to K4(t) a t  small t is O(t6).  

Departure of G(x, t )  from a Gaussian form at intermediate t has been noted in 
computer siniulatJions with a frozen, Gaussian u (Kraichnan 1970b). There appears 
to be a simple explanation. At times such that a typical fluid element has wandered 
the order of a correlation length, fluid elements with higher initial velocities are more 
likely to have gone far enough to suffer large deflexions. The result is a suppression of 

-f A detailed discussion is given in 3 7 of Kraichnan (1965). 
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the skirts of G(x,  t ) ,  which is consistent with the decreased value of ( X ; ) / ( X ; ) ~  noted 
in the simulations. At times long enough that typical fluid elements have travelled 
many correlation lengths the dispersion is effectively a random walk, and G(x, t )  
should approach Gaussian form again as t-too. Since K,(t) approaches a constant 
value as t+m, (3.26) then implies that the exact K,(t) grows more slowly than t at 
large t. 

If u is homogeneously distributed, the RGT (3.1), with a Gaussian, isotropic v, 
transforms the generalized velocity covariance according to 

Gi(x, t l s ;  x’, t‘ls’) = exp[$vi(t - t ’ ) 2  V2] [l&(x, t ( s ;  x’, t ’ l ~ ’ ) ] ~ ,  (3.27) 

of which (3.7) is a special case. Here Uii is the covariance of the fluctuating velocity 
only; the total velocity field is v + U, with covariance 6,jvi + Qj: Equation (3.27) shows 
that the purely Lagrangian functions Gi(x, tls; x’, t ls ’ )  and, in particular, UL( t )  are 
invariant. 

Under the RGT, G ( x , t )  transforms according to (3.6) and the formally exact 
equation (3.22) is augmented by the term vEV2G(x,t) on the right-hand side. With 
this term added the K,,(t) are invariant under the RGT. The point of prime interest 
is that the LH expansions (3.23) and (3.24) and the corresponding expansions for the 
higher KZn(t) are invariant order by order. In order to assert this it is not enough to 
observe that the expansions are built from pure Lagrangian functions, invariant 
under (3.27). Instead, it must be shown that if the entire analysis is repeated with 
u ( x )  replaced by v+u(x- vt)  then, with the viVZG(x, t )  term added to (3.22), vi drops 
completely out of the expansions for the K,,(t). For K,(t), which consists of a single 
term, this is immediately assured by the invariance of U L ( t ) .  For n 3 2, the asserted 
invariance property can be inferred as follows. The final expansions will consist of the 
terms found without v, which are invariant, and, possibly, terms involving vi only 
and cross-terms involving both v; and Uii. The terms in vi alone vanish order by order 
because v is Gaussian and for a Gaussian uniform field all the KZn(t)  but K,(t) vanish 
identically, For the possible cross-terms, we note that the summed series K,,(t) is 
invariant, otherwise (3.6) would be violated, and the coefficients of the vi products 
are invariant qi functions. Since the latter are essentially arbitrary, according to the 
choice of u, and vi is also arbitrary, there must be cancellation individually for each 
power of vi and each functional power of Uii,which can happen only if the cross-terms 
cancel a t  each order separately. 

The most striking difference between (3.3) and (3.22), apart from the fact that (3.4) 
is not invariant order by order to an RGT while (3.23) and (3.24) are, is that (3.3) is 
non-local in space and time while (3.22) is a pure differential equation for G(x , t ) .  
Also, the K,,(t) in (3.22) are independent of G, while T ( x , ~ )  is a functional power 
series in G. The non-localness in (3.3) is physically plausible because the dispersion 
process has an effective mean free path of a correlation length of u and an effective 
time between collisions of an eddy circulation time of u and we should not expect 
a priori that a local differential equation could describe the process exactly. Never- 
theless, in the degenerate case of a uniform, Gaussian field (infinite mean free path), 
the lowest-order truncation of (3.22) is exact while the lowest-order truncation of 
(3.4) used in (3.3) gives an unphysical cusp-like behaviour, as mentioned earlier. 

Actually, non-localness in space and time is implicit in (3.22)-(3.24) because the one- 
point Lagrangian velocity covariances therein are non-local expressions in the 
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Eulerian field. Moreover, the infinite series in V 2  in (3.22) is equivalent to an integral 
operator. That is, if we knew how to constructf(x, t )  we could write (3.22) in the form 

aG(x,  t) /at  = Sf(. - Y, t )  V2G(y, t )  dy, (3.28) 

where in the case of a spatially uniform u field f ( x ,  t )  degenerates to 

f ( x ,  t )  = 6 ( x )  K,( t )  (uniform u) .  (3.29) 

The integral form (3.28) is to be preferred over (3.22). Suppose tha t  the K,,(t) and 
hence the moments of the distribution G ( x ,  t )  are known for n < N and that (3.22) is 
then truncated a t  n = N .  For N > 1, literal solution of the truncated equation may 
give unphysical oscillations in G and singularities. It would be better instead to use the 
known moments in some appropriate orthogonal expansion scheme (for example, 
see Kraichnan 1970c) to construct a smooth approximation to G .  The approximation 
scheme could then, if desired, be translated into approximations t o  f ( x ,  t ) .  Taken as 
they are, (3.22)-(3.24)) plus the equations for the higher K,,(t), should be considered 
an expansion for the moments of G ( x ,  t ) ,  as expressed by (3.26), rather than an expan- 
sion for G itself. 

Since the KZm(t) are expressed in terms of the Lagrangian covariance while the 
prescribed data are the Eulerian covariance of the frozen field U$(x-x‘) ,  the LH 
expansion for G ( x ,  t )  is not logically complete without an LH renormalized expansion 
for the Lagrangian covariance. We show how to do this now, carrying the results 
explicitly only to the lowest terms. By (3.1 i ) ,  

au,,(x,tlt;x’,tls’)/at = Sni(x’,tls’; x , t l t ) ,  (3.30) 

a ~ ~ , ( x , t l s ; x ’ , t l s ’ ) / a t  = S,,(x,tJs; X ‘ , t l S ‘ ) + X n i ( X f , t l S ‘ ; X , t l S ) ,  (3.31) 

where X i n ( X ,  tls; X I ,  tJs‘)  = (Ui(X) [au,(x, t ls) /axj ]  u,(x’, tls’)) (3.32) 

and we have noted that ui(x,  tlt) = ui(x). The primitive expansion for Sin is constructed 
by substituting (3.19) for each factor on the right-hand side of (3.32) and averaging 
explicitly. Then the labelling times are all changed to t ,  and each UO factor is expressed 
in U factors by (3.21). The result is 

Iri,(x, t ls;  x‘,tls’) = R4 ds“U?:(x,tlt; x, t ls”)PU$f(x,t ls;  ~ ’ , t l s ’ ) / a ~ ~ i a ~ ,  Ist 
+ R41‘  ds” U y z ( x ,  t l t ;  x’, t/s’‘) a2UyF(x,tls; x‘ ,  t/s’)/axjax;a 

S‘ 

+ higher-order terms, (3.33) 

where terms with single space derivatives of the covariance, which vanish because of 
the mirror symmetry, have been omitted. Since U T  is just the doubly solenoidal 
part of qj, (3.30), (3.31) and (3.33) form a closed set which evolves Gm from the 
boundary values 

The LHDI approximation for U,,, is obtained by retaining in (3.33) only the terms 
shown explicitly. The LHDI equations have the closed subset 

qn(X,SIS;  x’,sIs) = q n ( x -  x ’ ) .  (3.34) 

(3.35) 

F L M  83 
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where U L ( X  - x' ,  t - s) = Ufy(X, t l t  ; x', t l s ) ,  

If the frozen field is confined to a thin shell in k space, so that 

U L ( t )  = UL(0, t ) .  (3.36) 

V'.(x) = 3~,2sin(k,x)/k~x, (3.37) 

where U$ is the mean-square velocity in any direction and k, is the shell wavenumber, 
then V2UL(x, t )  = - k,2 UL(x,  t )  and (3.35) has the analytic solution 

UL(t)  = 3 ~ , 2 s e c h ~ [ ( $ R ~ ) ~ u ~ k ~ t ] ,  UL(x , t )  = UL(t)sin (k,x)/k,x. (3.38) 

The re-expression of the K;,(t) of (3.16) in terms of Lagrangian covariances and the 
subsequent renormalization of the series for Sin can also be carried out with the ALH 
prescription explained in $5 1 and 2, since the K,,(t) involve only pure Lagrangian 
functions. There is no change in (3.23), but (3.24) changes to 

K4(t) = +(R4 - 1 )  ds ds' ds" UL(t - s) UL(s' - 8'') + higher-order terms 1: so' c' (3.39) 
and all the higher K,,(t) have altered forms. The closed set for Uii is (3.33) with s' = t 
and appropriate labelling changes in the higher terms not shown explicitly, together 
with (3.30). The ALHDI approximation, which retains only the terms shown ex- 
plicitly, gives just (3.35) again. 

Both the LH and the ALH treatment may be applied also to the case of time- 
dependent random convecting fields U ( X ,  t )  by adopting (3.12) and paying the price 
of substantial additional complication. 

4. Consistency properties of the expansions 
The exact Navier-Stokes and passive-scalar dynamics exhibit some basic in- 

variance and conservation properties. We have already discussed random Galilean 
invariance. The Navier-Stokes equation conserves energy, except for viscous dis- 
sipation, and similarly the passive-scalar convection conserves scalar variance. There 
is an additional conservation property of the action of the labelling transformation 
on the generalized fields (Kraichnan 1965), examples of which are 

aSu , (x , t l s )u , (x , t j s ' )dx  at = 0, at @(x,tls)j[f(x,tls')dx = 0.  (4.1) 

All of the quadratic conservation properties for averages arise from the identical 
vanishing of space integrals of triple moments with simultaneous labelling times. 
Moreover, these integrals vanish identically, whatever the values of the zero-super- 
scripted functions, at  each order of the primitive expansions for the triple moments. 
This can be inferred by putting an ordering parameter A in front of the stochastically 
nonlinear terms in the equations of motion and noting that the primitive expansion 
is a power series in A, which can vanish for arbitrary h only if the coefficient of each 
power vanishes. Or it can be noted that the triple-moment integral vanishes identically 
whatever the values of the essentially arbitrary zero-superscripted functions and 
therefore each functional power of these functions in the primitive expansion of the 
integral must vanish individually. 

The conservation properties survive also a t  each order of the Eulerian, LH and 
ALH renormalized expansions for the triple moment. This follows directly from the 
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fact that the renormalized expansions are obtained by a one-to-one reversion of the 
relation between zero-subscripted and exact functions, so that identical vanishing ae 
a functional of the former implies identical vanishing as a functional of the latter. In 
the Eulerian renormalization, the one-to-one transformation is between the functions 
with the same arguments. In  the LH reversion, the transformation is between, for 
example, UC(x,  t ls ;  x’,tls’) and U$?(x, tls; x’, tls’), where t is a fixed parameter during 
the reversion. Note that only simultaneous labelling times enter the triple moments 
involved in the conservation laws, so that the LH prescription gives only a single 
labelling time in the final series. In the ALH reversion, the transformation is between, 
for example, U$(x ,  tls; x‘, tls’) and U f y ( x ,  81s; x’, ~1s’)  ( s  2 8’). The one-to-one 
character of this transformation follows from the fact that 

U & ( X ,  t l s ;  x’, tls’) = U$.(X, 81s; x’, 81s’) 

together with the symmetry of U!& to exchange of its two argument sets. 

truncations of all the expansions (Kraichnan 1965). 

relation in absolute equilibrium : 

All the named conservation properties have been verified in detail for the lowest 

A further property of the exact dynamics is the inviscid fluctuation-dissipation 

Ci,j(x,tls; x’, t ’ l s ’ )  = fYij(X, t Js ;  x‘, t ’ l s ’ )  (s 2 s’), (4.2) 

which holds, with proper normalization of Uij, for a system cut off at  some high wave- 
number (Kraichnan 1965). This relation holds for the primitive expansion in the 
sense that the expressions for t and t‘ derivatives of Qj and Gij are identical at  each 
order of expansion if (4.3) is used in these expansions. The same kind of argument as 
for the conservation properties then shows that (4.2) survives at each order of the 
Eulerian renormalized expansion. In  the case of the LH and ALH renormalized 
expansions, the argument is valid if t = t’ (the ALH expansion is undefined fort # t ‘ ) .  
But it can not be asserted from this argument that (4.2) survives in the LH renormal- 
ized series order by order if t # t ’ .  This is because both t and t‘ appear as labelling 
times before reversion and a given zero-superscripted function may end up being 
expressed in a series with only t labels, one with only t’ labels, or one with both t and 
t‘ labels, depending on how the function arises in the primitive perturbation expansion ; 
the reversion transformation is formally exact if t # t’ but it is not one-to-one. 

In connexion with the LHDI approximation, the first truncation of the LH expan- 
sion, it was pointed out (Kraichnan 1965) that (4.2) is recovered for t # t’ if the re- 
labelling prescription for reversion of triple moments describing differentiation of 
qj or Gij with respect to t is modified. Doing this destroys the symmetry between 
(2.29) and (2.38), however, and we do not adopt here the possible modification dis- 
cussed in Kraichnan (1965, 9 11). 

Since the final Eulerian and LH renormalized expansions are for the derivatives of 
Uij(x, t l s ;  x’, t ‘ ls ’ )  with respect to t and t’, an additional consistency question is whether 
these expansions satisfy integrability conditions in the t ,  t‘ plane, order by order. This 
question can be attacked by methods like that Gsed above for the conservation pro- 
perties, but there are some delicate points and we defer discussion to another place. 
It can be shown by other methods that the Eulerian renormalized expansion does 
srttisfy integrability order by order. Since the LH expansion is exact at lowest order 
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for the random-oscillator problem it satisfies integrability order by order in that case 
at least. The question does not arise for the closed subset of the LH equations which 
describes the purely Lagrangian (t  = t ’ )  functions or for the ALH expansion. 

Arguments based on model systems suggest that in general the primitive expansions 
for the Navier-Stokes and passive-scalar problems diverge for all t but that finite 
radii of convergence in t can be obtained by taking an initial statistical distribution 
that bounds initial amplitudes and using a high wavenumber cut-off (Kraichnan 
1966, 1970~) .  Gaussian initial statistics and an infinite wavenumber cut-off can then 
be approached as a limit. Even in the case of the Gaussian random oscillator of $2, 
where the expansion of G(t )  in powers oft is absolutely convergent for all t ,  truncations 
do not give uniform approximations that permit approximation of quantities like 

JOw G ( t )  dt. 

The reverted expansions of zero-superscripted functions as functional series in 
exact functions must diverge if the primitive expansions do. But it is not easy to 
say what happens to analyticity properties when the renormalized expansions are 
formed by substituting these divergent series into the divergent primitive expansions 
for triple moments and time derivatives of Green’s functions. In  general it must be 
assumed that the renormalized expansions diverge also and that convergent approxi- 
mations must be formed from these expansions by more powerful procedures than 
truncation. Even in the case of the Gaussian random oscillator, truncations of the 
Eulerian renormalized expansion for (al?(t)) give solutions of the integro-differential 
equation for G(t )  which blow up (Kraichnan 1961). 

The lowest truncation of the Eulerian renormalized series (the direct-interaction 
approximation) is exceptional in that it describes exactly a stochastic model system 
and thereby assures healthy solutions (Kraichnan 1961). The LHDI and ALHDI 
approximations do not give this assurance. But they do keep the conservation laws 
and can be obtained from the direct-interaction approximation by an updating of 
labelling times, which should increase the stability of the equations. The consistency 
of the LHDI and ALHDI approximations is supported by bhe existing experience 
with them. 

It is highly interesting that the LH expansion is exact at  lowest order for the 
Gaussian random oscillator. A more elaborate LH expansion, involving vertex re- 
normalization, is in addition exact at  lowest order when a is exponentially distributed, 
so that the exact Green’s function is G(t )  = (1  - i(a) t)-l, which has a finite rather than 
an infinite radius of convergence. These examples serve to show that the Eulerian 
and LH renormalizations can have importantly different convergence properties. 
We shall not describe the vertex renormalization here. 

5. Concluding remarks 
The LH and ALH renormalized expansions presented and illustrated here provide 

a logical and systematic basis for the LHDI and ALHDI approximations. The latter 
appear in their own right instead of resulting from heuristic modifications of the 
Eulerian direct-interaction approximation. 
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We have mentioned that vertex renormalization, in which certain relations are 
written in terms of effective interaction coefficients which obey integral equations, 
can be carried over to the LH expansions. The combination of series reversion and 
labelling changes which we have used to obtain the LH expansions given above is in 
fact highly flexible and can be used also to generate expansions which have no 
meaningful description in terms of the diagram methods of traditional field theory. 
In addition, the expansions as presented here can easily be generalized to include 
random driving forces and can‘also be enlarged to include non-zero initial values of 
triple moments. 

The key ingredient in the LH expansions is the labelling transformations (1.1) and 
(2.2), which introduce a redundant description of the basic fields. It has seemed most 
logical to apply these transformations to u and @, as we have done, and this is sup- 
ported by the nice form found for the LH expansion of the passive-scalar Green’s 
functian. However we could also have taken the vorticity or rate-of-strain field instead 
of the velocity field and the scalar-gradient field instead of the scalar field as basic. 
In the Eulerian treatment, it makes no difference. But different LH expansions do 
result from applying the labelling transformation to the derivative fields instead of 
to u and @ themselves. Thus if (1.1) were replaced by 

(5.1) 

where w(x, t )  is the Eulerian vorticity field, a very different expansion would result. 
This is most easily seen by considering the two-dimensional inviscid case, in which 
(5.1) is identical with the equation obeyed by w(x, t ) .  There is then no dependence on 
measuring times for w(x, tls), and in the final LH expansion the Lagrangian moments 
of w which enter would have infinite correlation times. A more physical choice would 
appear to be making the rate-of-strain field basic so that the memory times in the 
resulting LHDI approximation for triple moments would relate directly to the strain- 
ing process. 

8o(x, t (s ) /8 t  = u(x, t )  .Vw(x, t ls) ,  w(x,sIs) = w(x, s), 
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Appendix. Reversion of functional power series 
Let f(z) be given by 

f ( 4  = g(x) + 2 K 2 h  91, Y2) g(y1) g(Yz) + c K 3 b  Y1, Yz, 9 3 )  g(y1) g(y2) d Y 3 )  + * .  . 9 (A 1) 

where x may include both continuous arguments, such as space-time position, and 
discrete arguments, such as vector indices, and denotes summation and integration 
over all the intermediate arguments yn. We revert (A 1) by successive approximation, 
starting with the zeroth approximation g(x) = f (x). Substituting this approximation 
for g(z) into all the c’s in (A 1) and retaining all terms up to the second degree in f 
we obtain the first approximation 

(A 2) g w  = f ( x )  - CK,(X, Y1, Y,)f(Yl)f(Y,). 
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Substituting (A2) for g in all the x ’ s  in (A 1 )  and retaining all terms up to the third 
degree in f we obtain the second approximation 

g(4 = f (4 - CK&, Y1Y Y 2 ) f  (Ydf (YJ - C K 3 b  Y1,2/2, Y 3 ) f  (YJf (YJf (Y3) 

-k I: K Z ( x ,  Y1, YZ) K Z ( ? / Z ,  Y 3 ,  Y 4 ) f ( Y l ) f  (Y3) f (Y4) ,  (A 3, 

where we have assumed, without loss of generality, that the K ,  in (A 1 )  are fully 
symmetric in all the y arguments. 

Repetition of this process gives g(x) as a functional power series in f to any desired 
order. 
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